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The recently discovered FeAs-based superconductors show intriguing behavior and unusual dynamics of
electrons and holes which occupy the Fe d orbitals and As 4s and 4p orbitals. Starting from the atomic limit,
we carry out a strong-coupling expansion to derive an effective Hamiltonian that describes the electron and
hole behaviors. The hopping and the hybridization parameters between the Fe d and As s and p orbitals are
obtained by fitting the results of our density-functional-theory calculations to a tight-binding model with
nearest-neighbor interactions and a minimal orbital basis. We find that the effective Hamiltonian, in the strong
on-site Coulomb-repulsion limit, operates on three distinct subspaces coupled through Hund’s rule. The three
subspaces describe different components �or subsystems�: �a� one spanned by the dx2−y2 Fe orbital, �b� one
spanned by the degenerate atomic Fe orbitals dxz and dyz, and �c� one spanned by the atomic Fe orbitals dxy and
dz2. Each of these Hamiltonians is an extended t− t�−J−J� model and is characterized by different coupling
constants and filling factors. For the case of the undoped material the second subspace alone prefers a ground
state characterized by a spin-density-wave order similar to that observed in recent experimental studies, while
the other two subspaces prefer an antiferromagnetic order. We argue that the observed spin-density-wave order
minimizes the ground-state energy of the total Hamiltonian.
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I. INTRODUCTION

The recent observation of superconductivity in quaternary
oxypnictides,1–6 which are materials based on FeAs �and
FeP�, has rekindled intense activity7–28 to find a description
of the strong electronic correlations present in these materials
and in the cuprates which could be responsible for such phe-
nomena.

The structure of the new materials2 �Fig. 1� consists of
FeAs layers sandwiched between LaO layers with rather
weak interlayer coupling. The FeAs layers consist of a
square lattice formed by the Fe atoms, while the As atoms,
which sit just above and just below the plane �see Fig. 1�,
form FeAs4 octahedra squeezed along the c axis such that
each Fe-As bond forms a �30° angle with the Fe plane.

As a function of temperature, the resistivity of the un-
doped parent compound, which is not an insulator, shows a
drop around 150 K �Refs. 2 and 29� before turning back
below 50 K. In addition, the magnetic susceptibility also
shows an anomaly at 150 K and it was argued29 that the
parent material has a spin-density-wave �SDW� instability
below 150 K. Recent neutron-diffraction studies30 demon-
strate that the parent compound at 150 K undergoes a struc-
tural distortion from tetragonal at high temperature to mono-
clinic at low temperature. Furthermore, these neutron-
diffraction studies show that below �134 K, while in the
monoclinic phase, it develops the SDW order shown in Fig.
1. Subsequent Mössbauer and muon spin rotation ��SR�
studies31 confirmed these findings: the structural transition is
found to be around 156 K and the magnetic transition around
138 K. The structural distortion which brings about the
monoclinic structure at low temperature is such that the rows
of atoms which have their spins antiferromagnetically
aligned are closer than the rows of atoms in the perpendicu-
lar direction.

The electronic structure of LaO1−xFxFeAs has been stud-
ied by density-functional theory7,11 �DFT� and by dynamical
mean-field theory.9 There are arguments against phonon-
mediated superconductivity9,10 in LaO1−xFxFeAs. In addition,
there are suggestions that a two-band model16–19,22 may be
the right effective Hamiltonian to use in order to describe the
low-energy physics of these materials.

Since the interlayer coupling is found to be weak,11 in
order to provide a simpler basis to understand the electronic
structure of these materials we will focus on a single FeAs
layer. As further justification of this choice, we have calcu-
lated the band structure of LaOFeAs and that of a single
FeAs layer within density-functional theory and we find that
the important features of the bands near the Fermi level ob-

FIG. 1. �Color online� The structure of the FeAs layer in the
FeAs-based superconductors. The Fe atoms form a square lattice
while the As atoms form two square sublattices one just above
�orange� and the other just below �yellow� the Fe plane. The x and
y axes used to characterize the orbitals are shown and the unit cell
is indicated by the shaded square. The + and − signs on the Fe
atoms denote the spin orientation observed in the neutron-scattering
experiment �Ref. 30�. The labels are used in the text to explain the
various types of antiferromagnetic exchange interactions.
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tained by the two calculations are essentially the same, in-
cluding position relative to the Fermi level and overall dis-
persion features. Accordingly, our starting point is a
Hamiltonian which includes the five Fe d orbitals and four
outer As orbitals �4s and 4p�. In our interacting-electron
model we include direct Fe-Fe hopping, hybridization be-
tween the Fe d and the As 4s and 4p orbitals, the local
Coulomb-repulsion energy for adding an electron on any of
the Fe d states via Hubbard-type terms in the Hamiltonian,
and finally, coupling through Hund’s rule.

We determine the relative energy of the atomic orbitals as
well as the hopping and the hybridization matrix elements as
follows: We carry out a set of first-principles calculations of
the electronic structure of a single FeAs layer. Using as basis
the above-mentioned Fe and As states, we fit the results of
the first-principles calculations using the tight-binding �TB�
approximation to determine the values of the hopping matrix
elements and the on-site energy levels. We find that the en-
ergy difference between the atomic orbitals is less than 1 eV
while the Coulomb repulsion to add two electrons on the
same Fe d orbital is assumed to be significantly larger.11–15,28

We perform a strong-coupling expansion in which the hop-
ping and hybridization terms are used as perturbation and the
unperturbed parts are the terms which correspond to the
Coulomb-repulsion energies for a pair of electrons placed on
the same or different orbitals. Even in the case where these
classes of materials do not fulfill the requirement for a
strong-coupling expansion, the qualitative results or trends
suggested by such a systematic analysis may still be useful.
We systematically derive a low-energy effective Hamiltonian
to describe this multiband system.

Through this analysis, we show that the relevant low-
energy degrees of freedom can be described by two “two-
flavor” subsystems, one in which the two flavors correspond
to electrons in the dxy and dz2 states of the Fe atoms and
another in which the two flavors correspond to the dxz and dyz
Fe orbitals, and a third one-flavor subsystem corresponding
to the dx2−y2 orbital. Each of those subsystems is described by
a t− t�−J−J� model where the spin degrees of freedom of all
three subsystems couple through Hund’s rule. Using this
Hamiltonian we are able to explain why the undoped mate-
rial orders in the SDW pattern shown in Fig. 1 as reported by
recent neutron-scattering experiments.30

The paper is organized as follows. Section II gives a de-
tailed discussion of our density-functional-theory band-
structure calculations. Section III presents the strong-
coupling limit analysis which leads to the effective spin-spin
interaction Hamiltonian derived in Sec. IV. Section V gives a
discussion of the physics of the effective Hamiltonian.

II. ELECTRONIC STRUCTURE CALCULATIONS

A. First-principles electronic structure

Our first-principles calculations are performed within the
framework of DFT and the local-density approximation
�LDA� for exchange-correlation effects. We used the SIESTA

code32 because it employs a localized basis of atomiclike
orbitals for the expansion of the wave functions which makes
the interpretation of electronic wave functions in the solid

straightforward and transparent without the need for addi-
tional analysis such as projection to localized Wannier-type
orbitals. We use pseudopotentials of the Troullier-Martins
type33 to represent the interaction between valence electrons
and ionic cores, and the Ceperley-Alder form for the
exchange-correlation functional.34 We have generated several
different Fe pseudopotentials in order to check for any de-
pendence of the results on this ingredient of the calculations.
We find that the effect of the different pseudopotentials on
the quantities reported in the following, such as the elec-
tronic bands, is indiscernible. In addition to the SIESTA cal-
culations, we have used the VASP code to ensure that there is
reasonable agreement between the results of two very differ-
ent computational schemes. The VASP code uses a plane-
wave basis instead of localized orbitals35 and employs
pseudopotentials of a different type36 than those in the SIESTA

calculation.
LaOFeAs, belonging to the tetragonal P4 /nmm space

group, has a layered structure.2 The FeAs layer serves as the
carrier conduction channel and it has strong electronic cou-
plings within the layer. The unit cell for the simplified model
system, a single FeAs layer, contains two Fe and two As
atoms with a vacuum layer with a thickness of �19 Å. The
full system bulk LaOFeAs has two atoms of each type �Fe,
As, La, and O� in the unit cell.

In the SIESTA calculations, we choose an auxiliary real-
space grid equivalent to a plane-wave cutoff of 100 Ry and
use an 8�8�1 Monkhorst-Pack k-point grid for the FeAs
layer, a 4�4�1 grid for the �2�2� FeAs supercell, and a
8�8�4 grid for the LaOFeAs structure. For geometry op-
timization, a structure is considered fully relaxed when the
magnitude of forces on all atoms is smaller than 0.04 eV /Å.
In the VASP calculation we use the same k-point grids and the
default plane-wave cutoffs.

The results obtained for bulk LaOFeAs and for the FeAs
layer, using the SIESTA and VASP codes, for the paramagnetic
phase are shown in Fig. 2. In both cases, the agreement be-
tween the two different computational schemes is remark-
able. Moreover, there is a very close similarity between the
bands of the bulk LaOFeAs compound and the FeAs layer,
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FIG. 2. The band structure obtained from the LDA calculations
for the paramagnetic phase of �a� the LaOFeAs compound and �b�
the FeAs layer. In both cases the lines are from the SIESTA calcula-
tions and the points from the VASP calculation. The Fermi level is
set at zero in each case for the neutral material.
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especially in what concerns the features near the Fermi level.
Notice that the neutral FeAs layer contains a different num-
ber of electrons per Fe atom than the bulk LaOFeAs com-
pound. Accordingly, we show the Fermi levels for the bulk
and the layer slightly offset to emphasize the similarity of the
band-structure features. Moreover, by examining carefully
the wave-function character of the bands near � and M, the
points in the Brillouin zone where electron and hole pockets
appear in the bulk LaOFeAs compound, we establish that
these states arise from orbitals associated with the Fe and As
atoms. For these reasons, it is reasonable to concentrate on
the band structure of the FeAs layer alone in order to build a
comprehensive picture of the interacting-electron system,
presented in Secs. III and IV.

We address next the issue of the spin configuration. We
considered different spin configurations in the antiferromag-
netic �AFM� phase. For these calculations we use a �2�2�
FeAs supercell. The two spin configurations are �i� AFM1,
which is simply repetition of the spin configuration in the
�1�1� unit cell and �ii� AFM2, which has the same spin
alignment in one of the two diagonal directions of the Fe
lattice and alternating spins along the other direction, as
shown in Fig. 1. The total energy for the former spin con-
figuration is lower by 0.95 eV per �2�2� cell, suggesting
that the AFM1 configuration is more stable than the AFM2
one for the neutral FeAs layer. We believe that this result is
due to the fact that our calculation is for the charge neutral
FeAs layer, where the Fermi level is lower than that of the
LaOFeAs compound; namely, the FeAs layer as part of the
LaOFeAs structure is negatively charged by an extra electron
per Fe atom because the LaO layer is positively charged
since the preferred oxidation state of La is La3+ and that of
oxygen is O2−. To show that this is the case, we carried out a
calculation using the VASP code for a charged FeAs layer. In
Fig. 3 the total energies of the AFM1 and AFM2 phases are
compared as a function of the added charge � per Fe atom.
Notice that the AFM2 phase becomes energetically favorable
for ��1. The exact values of � cannot be accurately deter-
mined in the context of these calculations because the energy

differences are within the range of accuracy of DFT-LDA.
The fact that the AFM2 phase becomes the ground state for
�=1 will be established using the effective Hamiltonian de-
rived in Sec. II B, which captures the interacting-electron
nature of the system in a more realistic manner, and as such
gives more reliable results for the magnetic phases.

B. Tight-binding approximation model

Our goal next is to calculate a tight-binding Hamiltonian
which approximately gives the same band structure as that of
the first-principles results for the FeAs layer using nearest-
neighbor �nn� interactions only �hopping matrix elements�
and a minimal orbital basis, consisting of the 4s and 4p As
orbitals and the 3d Fe orbitals. We expect that the hopping
matrix elements, needed for the Hamiltonian upon which the
strong-coupling expansion will be based, are not signifi-
cantly affected by the value of the filling factor �the position
of the Fermi level�. For the reasons discussed above, namely,
that a realistic picture of spin configurations can only arise
from the interacting-electron treatment based on the effective
Hamiltonian, we will focus on reproducing with the tight-
binding approximation the band structure of the paramag-
netic phase, as obtained from the DFT-LDA calculations.

Since the introduction of electron doping is necessary in
order to produce superconductivity in LaOFeAs-based mate-
rials, we focus in reproducing as accurately as possible the
features near and above the Fermi level. Note that hole-
doping induced superconductivity in these materials has been
also reported recently.6 We also use information from the
first-principles electronic wave functions to determine what
is the optimal fit of the tight-binding approximation to the
DFT-LDA results. As mentioned above, all the bands in the
neighborhood of the Fermi level are associated with the
As 4s and 4p and the Fe 3d orbitals, and these features are
well reproduced by the tight-binding approximation results.
The best fit we could achieve is shown in Fig. 4 and com-
pared to the first-principles results for an extended region
near the Fermi level. The on-site and hopping matrix ele-
ments that produce this fit are presented in Sec. III, where
these values are employed to construct the effective Hamil-
tonian.
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FIG. 3. �Color online� The total energy of the FeAs layer as a
function of the added charge obtained with the VASP code. The
reference energy is the energy of the neutral layer in the paramag-
netic phase.
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FIG. 4. The band structure of FeAs layer in the paramagnetic
phase obtained from �a� the LDA calculations with the two different
approaches �SIESTA—lines and VASP—points� and �b� the tight-
binding approximation with nearest-neighbor interactions and mini-
mal orbital basis.
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III. STRONG COUPLING LIMIT

We consider the Hamiltonian describing a single FeAs
layer of Fe and As �or, in a more general formulation, P�
atoms,

Ĥ = Ĥa + T̂ + Û , �1�

with the three terms defined by

Ĥa = �
i,�,�

�d���di�
���†di�

��� + �
l,	,�

�sp�	�spl�
�	�†spl�

�	�, �2�

T̂ = − �
�ij�,�,���

�t���dj�
����†di�

��� + H.c.�

− �
i,�,�,	

�
l�i�

�Vil
�	di�

���†spl�
�	� + H.c.� , �3�

Û = �
�

U�
�d��

i

nd
��i↑�nd

��i↓� + �
�,����

U���
�d� �

i���

nd
��i��nd

���i���

+ �
	

U	
�sp��

i

nsp
	 �i↑�nsp

	 �i↓�

+ �
	,	��	

U		�
�sp� �

i���

nsp
	 �i��nsp

	��i���

− �
�,��

J�,��
H �

i

S�d
��i� · S�d

���i� . �4�

We discuss the noninteracting parts, Ĥa and T̂, of the
Hamiltonian first. The operator di�

���† creates an electron of
spin � on the �th Fe d orbital ��=1, 2, 3, 4, and 5 are the
indices that correspond to the five Fe d orbitals, dx2−y2, dxz,
dyz, dxy, and dz2, respectively� at site i which has an energy
�d���. The operator spl�

�	�† creates an electron of spin � on the
	th As which is one of the three As orbitals. These As orbit-
als are formed as follows. First, because of the tetragonal
symmetry, the two 4px and 4py orbitals remain unhybridized,
while the 4s and 4pz As states form two linear combinations
�spz

��=a�s��b�pz�. The LDA calculation shows that the
As spz

− state together with the Fe 4s state forms bonding and
antibonding states where the bonding state is approximately
10 eV below the Fermi level and the antibonding state is
approximately 6 eV above the Fermi level. Therefore, these
two states are not included in the tight-binding fit and the
three As states included are the 4px and 4py orbitals and the

spz
+ hybrid. Thus, 	=1, 2, and 3 corresponds to the cases of

4px, 4py, and spz
+, respectively, at the lth As site with site

energy �sp�	�.
V is the hybridization term between the Fe 3d orbitals and

the As orbitals. The sum over l�i� means that it is over all
four As sites l around the ith Fe site. The hybridization ma-
trix element Vil

�	 is proportional to the wave-function overlap
of the �th Fe d orbital and the 	th As sp orbital. Some of
these matrix elements are zero due to symmetry arguments
and the most significant ones are of the order of, or less than,
1 eV, as obtained through our tight-binding fit of the LDA
results.

In Tables I–III we give the nonzero matrix elements ob-
tained by fitting the LDA results to the tight-binding model
�as explained in Sec. II� which includes the five Fe d states
and the three As 4s-4p states for each of the two Fe and the
two As atoms in the Fe2As2 unit cell, as well as the matrix
elements t��� and V�	 between these states. In addition to the
above terms, the tight-binding approximation to the LDA
results gives two hopping matrix elements t���: the first for
�→dxz and ��→dyz, which is txz,yz=0.54 eV, and the second
for �→dxy and ��→dz2, which is txy,z2 =0.20 eV. All other
hopping matrix elements are either identically equal to zero
due to symmetry or negligibly small.

We turn next to the interaction part, Û, of the Hamil-
tonian. nd

��i��=di�
���†di�

��� is the number operator and U�
�d� or

U	
�sp� give the Coulomb repulsion for a pair of electrons

placed on the same d orbital or the same s or p As orbital.
U���

�d� �or U		�
�sp�� is responsible for the Coulomb repulsion be-

tween different Fe d �or As sp� orbitals within the same
atom. We will assume that the Coulomb-repulsion terms be-
tween the same or different Fe d orbitals are significantly
greater than their counterparts for the As sp states, consistent
with the general expectations for these values in the litera-
ture: U�d� is believed to be large of the order of 4–5

TABLE I. The on-site energies in eV for the Fe 3d orbitals as
determined by approximating the results of the first-principles band-
structure calculation using the tight-binding approximation dis-
cussed in Sec. II. We also include the hopping matrix elements t��

between two nearest-neighbor Fe d orbitals of the same type. The
notation is explained in Sec. III.

� 1 2 3 4 5

Fe 3d orbital dx2−y2 dxz dyz dxy dz2

�d��� −4.6 −4.5 −4.5 −4.5 −4.2

t�� 0.22 0.5 0.5 0.43 0.22

TABLE II. Same as in Table I but for the As 4s4p orbitals.

	 1 2 3

As sp orbital px py spz
+

�sp�	� −4.7 −4.7 −5.2

TABLE III. Same as in Table I but for the hybridization matrix
elements between Fe 3d and As 4s4p orbitals. The atom labels are
those shown in Fig. 1. For the case of Fe atom labeled 2 in Fig. 1
the matrix elements are obtained from the same table by interchang-
ing labels 1 and 2 of the As orbitals and reversing the sign.

V�	 1�dx2−y2� 2�dxz� 3�dyz� 4�dxy� 5�dz2�

px�1� 0 0.1 0 −0.2 0

px�2� 0.4 −1.45 0 0 0.25

py�1� −0.4 0 1.45 0 0.25

py�2� 0 0 −0.1 −0.2 0

spz
+�1� −0.5 0 0.7 0 0.9

spz
+�2� −0.5 0.7 0 0 −0.9
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eV,11–15,28 while the parameter U�sp� is expected to be much
smaller than that. In addition, we will assume that the same
site Fe d Coulomb repulsion is larger than the interorbital
Coulomb repulsion U���

�d� . The term proportional to JH repre-
sents Hund’s rule for the Fe d orbitals, with JH
0, of the
order of less than 1 eV. We have neglected Hund’s rule cou-
pling for As orbitals.

Notice that the energy levels �d��� and �sp��� lie in the
region of −4.7�0.5 eV; namely, the energy difference be-
tween any pair of such states is less than 1 eV which is
believed to be smaller than the characteristic Coulomb-
repulsion energy U�d�. In this paper we begin our analysis
from the atomic or strong-coupling limit, which implies that
we have assumed that the energy scale U� defined below in
Eq. �17� is significantly larger than the hopping and hybrid-
ization matrix elements. If this condition is not fulfilled for
this class of materials, it may still be instructive to discuss
the qualitative features which a strong-coupling expansion
yields. In this limit the unperturbed part of the Hamiltonian

Ĥ0 is

Ĥ0 = Ĥa + Û , �5�

and the hopping part T̂, which includes the hybridization,
plays the role of perturbation. As discussed previously, the
FeAs layer in the undoped LaOFeAs parent compound has
an additional electron relative to the neutral FeAs layer. This
is due to the fact that LaO layer is expected to be in com-
bined 1+ oxidation state. Therefore, the eight states consid-
ered above �five Fe d states plus three As sp states� are oc-
cupied by 12 electrons. The atomic configuration is shown in
Fig. 5. Since we have five more electrons than levels, five
energy levels must be doubly occupied. Double occupancy

of the Fe d orbitals is much more costly compared to the
As sp orbitals; therefore, all three of the As orbitals must be
doubly occupied and the only doubly occupied Fe d orbital is
dx2−y2, which has the lowest energy. The other four Fe d or-
bitals are singly occupied and the spins of these electrons are
parallel because of Hund’s rule, represented by the coupling
JH.

Next we consider the effective Hamiltonian which, in
strong-coupling perturbation theory, is given by

Ĥeff = E0P̂0 + P̂0T̂�̂ , �6�

�̂ = P̂0 + R̂�T̂�̂ − �̂T̂�̂� , �7�

R̂ =
Q̂

Ĥ0 − E0

, �8�

where E0 is the ground-state energy given by the energy of

the state depicted in Fig. 5. Ĥeff operates in the subspace S0

formed by the degenerate ground states of Ĥ0, that is, the
subspace of states produced by the direct product of atomic
states like those in Fig. 5 in which the spins of the four
electrons occupying the four d orbitals, from one Fe atom to

the next, point either all up or all down. The operator P̂0 is a
projection operator which projects into the subspace S0 and

Q̂=1̂− P̂0, that is, the operator which projects outside the
subspace S0. The above equation can be formally solved it-
eratively to yield the Rayleigh-Schrödinger expansion as a

power series in T̂. The leading term is T̂ which, when re-
stricted in this subspace S0, becomes just the direct Fe-Fe
hopping terms,

P̂0T̂P̂0 = − �
�ij�,�,���

�t���dj�
����†di�

��� + H.c.� . �9�

On the right-hand side of the above equation we have omit-
ted the projection operators by assuming that we will restrict
ourselves to the subspace S0.

In the following, in order to simplify the calculation, we
will take U�

�d�=U to be independent of � and we will assume
that U is much larger than the atomic energy-level difference
�which was found to be less than 1 eV within our TB ap-
proximation� and significantly larger than the hopping and
hybridization parameters. In addition, we will take U����

�d�

= Ū, U�
�sp�=Usp, and U	�	�

�sp� = Ūsp, i.e., to be independent of
� ,�� �or 	 ,	��.

IV. EFFECTIVE SPIN-SPIN INTERACTION
HAMILTONIAN

A. Interaction between same-type Fe orbitals

First, there are the familiar second-order processes arising
from the direct Fe-Fe hopping through the matrix elements
t�� which give rise to an antiferromagnetic exchange interac-
tion of the form

H�,� = J�,�
�2��

�ij�
S� i

� · S� j
�, �10�

dyz

d z 2

sp z
+

px p
y

Fe As

xyd

d 2
x -y

2

-5.0

-4.8

-4.6

-4.4

-4.2

-4.0

dxz

-5.2

FIG. 5. The occupation of the Fe and As atomic levels in the
FeAs plane of the undoped parent compound. The ordering of the
levels is shown schematically, as obtained from the tight-binding
approximation parameters.
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J�,�
�2� =

4t�,�
2

U
. �11�

In addition, we have antiferromagnetic coupling of the spins
of two different types of Fe d orbitals due to the hopping
terms txz,yz and txy,z2 which give rise to

H�,�� = J�,��
�2� �

�ij�
S� i

� · S� j
��, �12�

J�,��
�2� =

4t�,��
2

U
, �13�

where � ,�� can be either xz ,yz or xy ,z2. These processes
take place only between nearest neighbors such as the Fe
atoms 1 and 2 in Fig. 1. These second-order contributions are
obtained from the square of the matrix elements listed in
Table IV by multiplying them with 4 /U. There are no
second-order next-nearest-neighbor �nnn� contributions to
the spin-spin interaction.

The next terms to leading order, beyond the first- and
second-order terms discussed above, are fourth-order pro-
cesses involving an Fe d orbital and the As sp orbitals with
which it hybridizes. The contribution of all sp orbitals of the
two possible intervening As atoms to the exchange interac-
tion between the same d orbital of two nn Fe atoms is given
by37

H�,� = J�,�
�4��

�ij�
S� i

��� · S� j
���, �14�

J�,�
�4� = �

	=1

6

J��
	 , �15�

J��
	 = 2b2� 1

U�
+

1

U� + �
	, b =

V1
	�V2

	�

U� + �
, �16�

where

U� = U + 5Ū − �4Ūsp + Usp� , �17�

and U� is assumed to be significantly larger than all other
energy scales in the problem. Here

� = �sp�	� − �d��� �18�

is the energy difference between the As sp state and that of
the Fe d orbital. Subscripts 1 and 2 in the matrix elements

refer to the fact that the two nn atoms 1 and 2 are at 90°
angle relative to the position of the intervening As atom and,
therefore, V1 is from Table III, while V2 is from Table III by
interchanging indices 1 and 2 and the sign of the matrix
elements.

Since ��1 eV for any combination of Fe d and the three
As sp orbitals and U��5 eV, if � is neglected in the above
expression the error in our estimate for the exchange cou-
plings J will be rather small. We are going to use the full
expression given by Eq. �16� when we compute the coupling
constants J between the same-type Fe orbitals. We will also
use this approximation of neglecting � because it simplifies
the results and this gives additional insight. With this ap-
proximation, we find that

J�,�
�4� 


4A��

U�3 , �19�

A�� = �
	=1

6

�V1
	�V2

	��2. �20�

Since the value of U� is not known, we can use the expres-
sion given by Eq. �20� as a measure of the relative spin-
exchange interaction coupling. Namely, to obtain the actual
values of J��

�4�, and J���
�4� with ���� to be discussed next, we

just need to multiply the values given in Table V by 4 / �U��3.
Therefore, for two nn Fe atoms, such as Fe atoms 1 and 2 in
Fig. 1, the spin-spin interaction coupling constant J�� is ob-
tained by adding the second- and fourth-order contributions
J��

�2� and J��
�4�, respectively.

On the other hand, for two nnn Fe atoms, such as 1 and 3
in Fig. 1, there are no second-order processes since there are
no direct hopping between such atoms. The fourth-order su-
perexchange contributions is obtained as follows:

H�,�� = J�,�� �
��ij��

S� i
��� · S� j

���, �21�

J�,�� =
1

2 �
	=1

6

J���
	, �22�

J���
	 = b�2� 1

U�
+

1

U� + �
	, b� = 2

�V1
	��2

U� + �
. �23�

Notice that in this case the same matrix elements V1 are
involved because both atoms participating in the superex-

TABLE IV. The second-order nn contribution to the spin-spin
couplings is obtained from the matrix elements listed below �in
units of eV2� by multiplying them with 4 /U.

t���
2 dx2−y2 dxz dyz dxy dz2

dx2−y2 0.048 0 0 0 0

dxz 0 0.25 0.29 0 0

dyz 0 0.29 0.25 0 0

dxy 0 0 0 0.185 0.04

dz2 0 0 0 0.04 0.048

TABLE V. Fourth-order sum of matrix elements contributing to
the nn spin-spin couplings.

A��� dx2−y2 dxz dyz dxy dz2

dx2−y2 0.13 0.12 0.12 0.01 0.40

dxz 0.12 0.04 0.24 0.08 0.40

dyz 0.12 0.24 0.04 0.08 0.40

dxy 0.01 0.08 0.08 0 0.01

dz2 0.40 0.40 0.40 0.01 1.31
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change form the same angle with the intervening As atoms.
In addition, there is a factor of 2 difference between the
above expression and Eq. �16� because there is only one
possible intervening As atom for two fixed Fe atoms. The
simplified expression, when � is neglected, is the following:

J�,���4� 

4A���

U�3 , �24�

A��� =
1

2 �
	=1

6

�V1
	��4. �25�

The values of the constant A��� are given as the diagonal
matrix elements of Table VI.

B. Interaction between different-type Fe orbitals

There is an effective spin-spin interaction between certain
Fe orbitals of different types, J��� with ����. This type of
nn and nnn spin-spin interactions for most of the orbitals is
significantly smaller than the J�� coupling constants between
the same orbitals. To obtain an estimate of these we use the
simplified expressions where � is neglected. Namely,

J�,��
�4� 


4A���

U�3 , �26�

A��� = �
	=1

6

�V1
	�V2

	���2, �27�

J�,��
��4� 


4A���
�

U�3 , �28�

A���
� =

1

2 �
	=1

6

�V1
	�V1

	���2. �29�

The values of the constants A��� and A���
� are given as the

off-diagonal matrix elements of Tables V and VI.

C. Hopping between same-type Fe orbitals

There are contributions to the effective hopping matrix
elements due to second-order processes. Namely, processes
in which an electron from a doubly occupied As orbital mo-
mentarily hops to the nn Fe d orbital and then an electron

from the doubly occupied doped d orbital hops to the singly
occupied As orbital left behind. These processes give rise to
the following expression:


t�,� = �
	=1

6
V1

	�V2
	�

U� + �
, �30�

where � is given by Eq. �18�. Again, since the value of U� is
not known, for large enough values of U� ���1 eV� we can
neglect � in the above expression to obtain the following
expression:


t�,� =
B��

U�
, �31�

B�� = �
	=1

6

V1
	�V2

	�, �32�

and the values of B�� are given as the diagonal elements in
Table VII. The actual estimates for 
t�� can be obtained by
dividing the values in the table by U�. The total effective nn
hopping is given as

t̃�� = t�� + 
t��. �33�

In the case of nnn such as the Fe atoms 1 and 3 in Fig. 1 we
obtain

t̃��� =
B���

U�
, �34�

B��� =
1

2 �
	=1

6

�V1
	��2. �35�

The values of B��� are given as the diagonal elements of Table
VIII.

D. Hopping between different-type Fe orbitals

There is a second-order process by means of which a
doubly occupied site can effectively hop to a nn Fe d orbital
of different types by involving an intervening As sp orbital.
These contributions are smaller than those connecting two of
the same-type Fe d orbitals and they can be approximated by


t�,�� =
B���

U�
, �36�

TABLE VI. Fourth-order sum of matrix elements contributing to
the nnn spin-spin couplings.

A���
� dx2−y2 dxz dyz dxy dz2

dx2−y2 0.18 0.46 0.46 0 0.42

dxz 0.46 4.66 0 0 0.53

dyz 0.46 0 4.66 0 0.53

dxy 0 0 0 0 0

dz2 0.42 0.53 0.53 0 1.32

TABLE VII. Second-order terms contributing to the effective nn
hopping.

B��� dx2−y2 dxz dyz dxy dz2

dx2−y2 −0.50 0.31 0.31 0 0

dxz 0.31 0.29 −0.49 −0.29 −0.65

dyz 0.31 −0.49 0.29 0.29 0.65

dxy 0 −0.29 0.29 0 0.1

dz2 0 −0.65 0.65 0.01 1.62
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B��� = �
	=1

6

V1
	�V2

	��. �37�

The values of B��� are given by the off-diagonal elements of
Table VII.

There is also a second-order process which gives rise to
hopping between nnn Fe d orbitals of different types. For this
case we obtain


t�,��
� =

B���
�

U�
, �38�

B���
� = �

	=1

6

V1
	�V1

	��. �39�

The values of B���
� are given by the off-diagonal elements of

Table VIII.
The total effective nn and nnn hoppings for ���� are

given as

t̃��� = t��� + 
t���, �40�

t̃���
� = 
t���

� . �41�

E. Effective Hamiltonian

In summary the effective Hamiltonian is given by

Heff = �
�,��

H��� − JH �
i,�,��

S� i
� · S� i

��, �42�

where each of the H�,�� terms above may be written as

H�,�� = − �
�ij�,�

t̃�,��cj���
† ci�� − �

��ij��,�
t̃�,��
� cj���

† ci��

+ �
�ij�

J�,��S
�

i
� · S� j

�� + �
��ij��

J�,��
� S� i

� · S� j
��. �43�

Next, we will provide estimates of the coupling constants
t̃�,��, t̃�,��

� , J�,��, and J�,��
� involved in the above model based

on the values of the parameters obtained from fitting the
LDA results to the tight-binding model. The matrix elements
for nn hopping t̃��� and spin-spin interaction J��� as well as
their counterparts for nnn interactions—that is, between sites
diagonally across in the square lattice formed by the Fe
atoms, t̃���

� and J���
� —are given in Tables IX and X for

U�=U=5 eV and in Tables XI and XII for U�
�=U=3 eV. A

more simplified model than the one given above is discussed
in Sec. V.

V. DISCUSSION

First, by examining Tables IX–XII, we notice that to a
reasonable degree of approximation the following three sub-
spaces couple with each other rather weakly: �a� one spanned
by the dx2−y2 Fe orbital, �b� one spanned by the degenerate
atomic Fe orbitals dxz and dyz, and �c� one spanned by the
atomic Fe orbitals dxy and dz2. Notice that the most signifi-
cant off-diagonal matrix elements are those which couple dxz
to the dyz orbital and those which couple dxy to the dz2 orbital.
There are other smaller off-diagonal matrix elements which
couple these subspaces weakly. These three subspaces, how-
ever, are much more strongly coupled through JH.

We consider the undoped �LaOFeAs� case first. Because
six electrons should occupy the five Fe d orbitals �see Fig.
5�, the lowest-energy subspace spanned by dx2−y2 is occupied
by two electrons, and also each of the other two subspaces is
also occupied by two electrons. As mentioned above, these
three subspaces are coupled mainly because JH�0. Further-
more, the bands formed in any given subspace are intersected

TABLE VIII. Second-order terms contributing to the effective
nnn hopping.

B���
� dx2−y2 dxz dyz dxy dz2

dx2−y2 0.82 −0.93 −0.93 0 0

dxz −0.93 2.60 0 −0.02 −0.99

dyz −0.93 0 2.60 0.02 0.99

dxy 0 −0.02 0.02 0.08 0

dz2 0 −0.99 0.99 0 1.74

TABLE IX. The estimated matrix elements for J��� and J���
� for

U=5 eV.

J, J� dx2−y2 dxz dyz dxy dz2

dx2−y2 0.04 0.0 0.0 0.0 0.01

0 0 0.01 0.01 0.01

dxz 0.0 0.20 0.24 0.0 0.01

0.01 0.07 0 0.0 0.01

dyz 0.0 0.24 0.20 0.0 0.01

0.01 0 0.07 0.0 0.01

dxy 0.0 0.0 0.0 0.15 0.03

0 0 0 0 0

dz2 0.01 0.01 0.01 0.03 0.08

0.01 0.01 0.01 0.0 0.02

TABLE X. The estimated matrix elements for t��� and t���
� for

U=5 eV.

t̃, t̃� dx2−y2 dxz dyz dxy dz2

dx2−y2 0.12 0.06 0.06 0 0

0.08 −0.09 −0.09 0 0

dxz 0.06 0.56 0.44 −0.06 −0.13

−0.09 0.26 0 0 −0.1

dyz 0.06 0.44 0.56 0.06 0.13

−0.09 0 0.26 0 0.1

dxy 0 −0.06 0.06 0.43 0.22

0 0 0 0.01 0

dz2 0 −0.13 0.13 0.22 0.54

0 −0.1 −0.1 0 0.17
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by the bands formed in the other two subspaces because their
atomic energy difference is small compared to their band-
width.

There is a great degree of magnetic frustration, as noted in
Refs. 20, 21, and 25, especially in the subspace spanned by
dxz /dyz. In this subspace the nnn coupling J� becomes greater
than J /2 for any value of U��4.3 eV �see Fig. 6�. When
J�2J�, the observed columnar antiferromagnetic ordering is
favorable21,25 relative to the familiar �� ,�� antiferromag-
netic order. The subspace spanned by dx2−y2 has net spin zero
and, therefore, is not expected to contribute significantly to
the choice of magnetic order. On the other hand, there seems
to be less frustration in the subspace spanned by dxy /dz2,
which is half-filled; we therefore expect that a long-range
antiferromagnetic order should characterize the ground state
of this subspace if it were uncoupled from the dxz /dyz sub-
space. However, due to Hund’s rule coupling JH, the spin
orientation of all subspaces should be common. The conflict-
ing preferences of these two subspaces, which are forced to
make a common choice, introduce further frustration of rela-
tive spin orientation.

We expect that the subspace spanned by dxz /dyz drives the
system to a global columnar order20,21,25 because it is char-
acterized by the larger couplings. The presence of a large J�
in the subspace spanned by dxz /dyz might impose the �0,��
order through the relatively large Hund’s rule coupling JH
�0.5 eV. The fact that the subspace dxz /dyz prefers the co-
lumnar order and the subspace dz2 /dxy prefers the �� ,�� or-
der creates frustration which may also explain the fact that
the observed moment per Fe atom is small.

We emphasize that unlike the case of undoped cuprates,
the undoped parent compound in the case of the oxypnictides
is not an insulator. As can be inferred from Fig. 1, the motion
along the ferromagnetic direction is not hindered and, there-
fore, the undoped material is expected to demonstrate aniso-
tropic transport in the SDW phase.

We would like to discuss the case of the neutral FeAs
layer which was considered in Sec. II, where it was found
that the ground state is characterized by �� ,�� order. The
case of the neutral layer has five electrons per Fe atom and
this implies that all Fe d orbitals should be singly occupied.
Therefore, the subspace spanned by dx2−y2 is no longer char-
acterized by spin zero. This means that the subspace dxz /dyz
in order to drive the columnar order has to compete against
not just one but two subspaces which prefer the �� ,�� order.

The phenomenological Hamiltonian considered in Ref.
20, 21, and 25 to introduce frustration is different from the
one we derived based on a more rigorous approach, which is
more complex. The next step would be to study the Hamil-
tonian given in Eqs. �42� and �43� by various analytical and
numerical techniques, which is beyond the scope of the
present work.

While the estimated nn antiferromagnetic coupling con-
stants are of similar magnitude to the one in the cuprous
oxides,38 in the oxypnictide materials there is magnetic frus-
tration mainly due to the fact that the nnn antiferromagnetic
coupling for the dxz /dyz subspace is large. Therefore, assum-
ing that the pairing interaction between electrons is of mag-
netic origin, it is not clear if the pairing energy scale is larger
or smaller compared to that in the cuprate superconducting
materials. The pairing energy scale in the present model may
be enhanced by the “flavor” factor, that is, the number of
states spanning the subspace where the added electrons go in

TABLE XI. The estimated matrix elements for J��� and J���
� for

U=3 eV.

J, J� dx2−y2 dxz dyz dxy dz2

dx2−y2 0.08 0.02 0.02 0 0.06

0.01 0.03 0.03 0 0.03

dxz 0.02 0.34 0.42 0.01 0.06

0.03 0.35 0 0 0.04

dyz 0.02 0.42 0.34 0.01 0.06

0.03 0 0.35 0 0.04

dxy 0 0.01 0.01 0.25 0.05

0 0 0 0 0

dz2 0.06 0.06 0.06 0.05 0.26

0.03 0.04 0.04 0 0.10

TABLE XII. The estimated matrix elements for t��� and t���
� for

U=3 eV.

t̃, t̃� dx2−y2 dxz dyz dxy dz2

dx2−y2 0.05 0.10 0.10 0 0

0.14 −0.16 −0.16 0 0

dxz 0.10 0.60 0.38 −0.10 −0.22

−0.16 0.43 0 0 −0.17

dyz 0.10 0.38 0.60 0.10 0.22

−0.16 0 0.43 0 0.17

dxy 0 −0.10 0.10 0.43 0.23

0 0 0 0.01 0

dz2 0 −0.22 0.22 0.23 0.76

0 −0.17 0.17 0 0.29

2.5 3 3.5 4 4.5 5

U
*

(eV)

0

0.1

0.2

0.3

0.4

0.5

eV

Nearest neighbor coupling/2
Next nearest neighbor coupling

FIG. 6. The calculated nn Jxz,xz /2 is compared to the nnn Jxz,xz�
as a function of U�=U. The condition for the instability of the
�� ,�� order to the columnar order is Jxz,xz� 
Jxz,xz /2 which occurs
for values of U��4.3 eV.
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the case of electron doping, and by the fact that the hopping
and spin-exchange matrix elements are estimated to be
somewhat larger compared to those in the case of the cu-
prates �see Tables IX–XII�. Therefore, it is conceivable that
this new class of superconductors could lead to higher criti-
cal temperatures upon future optimization of the doping
agents and other factors.

A very important difference between the oxypnictides and
the cuprates is that the fivefold sector can be thought of as
formed by three subsectors, two two-flavor sectors and one
one-flavor sector. The dxz /dyz sector prefers the SDW order
depicted in Fig. 1; the sector spanned by the dx2−y2 orbital has
spin zero and the other sector spanned by dxy /dz2 prefers
antiferromagnetic long-range order. These subspaces are

coupled by Hund’s rule which, we believe, leads to the SDW
order with ferromagnetic order along one direction and anti-
ferromagnetic ordering between such chains. As in the case
of cuprates, superconductivity in the oxypnictide materials
might coexist with SDW order39 but these are expected to be
to some extent competing orders as found in neutron40 and
�SR studies41 done on the superconducting doped materials.
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